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Unfolding Polyhedra via Cut-Tree Truncation

Alex Benton∗ Joseph O’Rourke†

Abstract

We prove that an infinite class of convex polyhedra, pro-

duced by restricted vertex truncations, always unfold with-

out overlap. The class includes the “domes,” providing a

simpler proof that these unfold without overlap.

1 Introduction

It is a long unresolved question whether or not every
convex polyhedron may be cut along edges and unfolded
to a single, non-overlapping polygon [DO07]. (Hence-
forth, we use “unfolding” to mean this type of “edge
unfolding.”) An unfolding is determined by a polyhe-
dron P and a cut-tree T that spans the vertices of P . We
define a property of a pair (P, T ) that permits deriva-
tion of a new pair (P ′, T ′), where P ′ has more vertices
than P , such that (P ′, T ′) determines a non-overlapping
unfolding.

We say an unfolding has the empty sector property if
the circular sector in the unfolding defined by each edge
incident to a leaf vertex x of the cut-tree T is empty.
If y is the parent of x in T , then this sector is defined
by xy1 and xy2, where y1 and y2 are the two unfolded
images of y, with sector angle the curvature at x. See
Fig. 1(b).
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Figure 1: Sector nesting for triangle truncation. (a) Ver-
tex x of P is truncated to 4abc in P ′; (b) The unfolding
of P and of P ′ in the vicinity of x.

Many unfoldings have the empty sector property. For
example, take any tetrahedron, and a Y cut-tree, the star
from some vertex. This clearly produces an unfolding
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with the empty sector property. Every unfolding of the
cube has the empty sector property.

Let x be a leaf of the cut-tree T . A leaf trunca-
tion is a truncation of the vertex x of the polyhe-
dron P to P ′, and a corresponding alteration of the
cut-tree to T ′, so that, if y is the parent of x in T ,
and (a, p1, p2 . . . , pk) is the polygon resulting from the
truncation, with a ∈ xy, then, T ′ follows the “claw”
(y, a, p1, p2, . . . , pi) and (y, a, pk, pk−1, . . . , pi+1), leaving
some edge pipi+1 uncut. For example, if x has degree 3
in P (as in Fig. 1(a)), then the truncation polygon is a
triangle 4abc (bc = p1p2), and the claw becomes the Y
{ya, ab, ac}. We call this a degree-3 leaf truncation, to
which the theorem below is restricted.

2 Main Theorem

Theorem 1 If a non-overlapping unfolding of a polyhe-
dron P via a cut-tree T has the empty sector property,
then the cut-tree T ′ produced by a degree-3 leaf trun-
cation (a) unfolds P ′ without overlap, and (b) has the
empty sector property.

Proof: Let x be a degree-3 leaf of the cut-tree T with
parent y, and let x have incident edges {yx, ux, vx}. Let
the truncation of x produce4abc on the truncated poly-
hedron P ′, with a ∈ yx, b ∈ ux, c ∈ vx, as illustrated
in Fig. 1(a). The cut-tree T ′ includes the Y {ya, ab, ac};
the edge bc is uncut.
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Figure 2: If a is outside the sector, then the positions
of b and c are reversed to b′ and c′.

We now compare the unfolding of P and of P ′ in
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the vicinity of x. The curvature α at x is the angle
gap in the layout of the triangles 4xyu, 4xuv, 4xvy
around x in the unfolding of P . A key observation is
that the unfolding of P ′ leaves these triangles fixed in
the same position but truncated. The edges ub and vc
remain uncut, and so maintain the relative positions of
the triangles. The truncation triangle 4abc is affixed at
edge bc in the P ′ unfolding. (See Fig. 1(b).) Our goal is
to prove that 4abc remains inside sector(x, a1, a2), and
therefore inside the enclosing sector(x, y1, y2).

The position of a, the tip of 4abc in the unfolding
of P ′, is the point where the rotations of ba1 and ca2

meet. Let β = ∠a1xb and γ = ∠a2xc. Then, as is
evident in Fig. 2, the rotation of a1 must start inside
sector(x, a1, a2) in a neighborhood of a1, because the
convexity of β places b right of the line through xa1.
And similarly for a2. However, it is conceivable that
this rotation ends with a outside the sector. Suppose it
does, as in the figure. Then it must be that b lies on the
perpendicular bisector of a1a, because a is the rotation
of a1 about b at a distance |ba1|; and similarly c lies on
the perpendicular bisector of a2a. But these bisectors
must cross inside the sector, each passing to the “wrong
side” of x, because a is outside the sector (if a were on
the arc a1a2, then the bisector would pass through x).
This interchanges the presumed positions of b and c, a
contradiction.

To be more precise on this interchange claim, let L be
the line containing bc. Then the perpendicular bisector
of a1a meets L in a point b′ that is left of the point c′

at which the bisector of a2a meets L. But we labeled
the vertices so that b is right of c on L.

Although our figures use α < π, nothing changes with
α ≥ π. Therefore, we have established the sector nesting
property claimed in the lemma.
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Figure 3: Including the edge bc from Fig. 1 can lead to
overlap.

Fig. 3 shows that the Y-split choice made in the defini-
tion of degree-3 truncation is necessary.

Corollary 2 Any polyhedron P derived by repeated
degree-3 leaf truncations from an initial polyhedron P0

and cut-tree T0 with the empty sector property, unfolds
without overlap via the derived cut-tree T .

See Fig. 4 for an example.

Figure 4: A series of degree-3 truncations refining one
corner of a tetrahedron.

3 A counterexample for a truncation of degree > 3

This theorem does not hold in its most general form
for truncation of leaves of degree δ > 3. This negative
result is demonstrated by a pyramid P with a five-sided
wide and thin base, shown in Fig. 5. The cut tree T of
P has the empty sector property at every vertex. Note
that T follows the ‘spine’ of P from base to apex.

We truncate P to P ′, replacing the apex of P with a
new five-sided face f (Fig. 6). Retaining all previous cut
edges of T and extending T ′ to include four of the new
edges of f , we find that there is no edge of f at which
it may be joined to the unfolding of P ′ without conflict
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Figure 5: (a) Pyramid P with five-sided base. (b) The
pyramid, unfolded.

Figure 6: The truncated pyramid P ′ with tip removed.

(Fig. 7). This establishes that Theorem 1 cannot be
extended to arbitrary k.

Figure 7: All five attachments of the new face f to P ′

(two symmetric and not shown) lead to overlap.

4 Cutting to achieve degree-k vertices

As shown above, truncating a vertex of degree > 3 may
introduce conflict in the unfolding. This prohibits the
removal of such vertices through truncation but does
not prohibit the creation of higher-degree vertices.

Let a be a degree-3 leaf node of cut-tree T , and b the
parent of a. Perform a leaf-node truncation to produce
Tε, where the truncation triangle cuts ab a small dis-
tance ε from b. By Theorem 1, the unfolding produced
by Tε strictly avoids overlap. Note that b is “nearly”

degree-4; see Fig. 8. Letting ε → 0 changes b to truly
degree-4 without causing overlap. This process can be
repeated on any degree-3 leaf to increase the degree of
its immediate parent. Note that this argument results
in every ε-edge being part of T and therefore cut, which
is essential.
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Figure 8: When ε → 0, node b of Tε becomes degree-4.

5 Empty sector property essential

We now show that the empty sector property is nec-
essary for Theorem 1. Consider the convex cap C in
Fig. 9(a), a subset of a larger convex polyhedron not
shown. C is cut by some cut-graph T to the unfolding
shown in Fig. 9(b). This local subset of the unfolding
avoids overlap but does not have the empty sector prop-
erty.

In Fig. 9(c) the circled degree-3 vertex in Fig. 9(a)
has been truncated, replacing it with a triangular face
and extending T with new edges. This immediately in-
troduces a conflict into the unfolding, seen in Fig. 9(d).

6 Polyhedra achievable by degree-3 leaf truncation

It is of interest to know which shapes are achievable by
degree-3 leaf truncation, for all these shapes are edge-
unfoldable. The class depends on the initial (P0, T0)
pair. Starting from a pyramid leads to the class of
“domes,” which were defined and proved to be unfold-
able without overlap in [DO07, Sec. 22.5]. A dome is
a convex polyhedron with a distinguished base polygon
B, and the property that every nonbase face shares an
edge with B.

Lemma 3 Starting from a pyramid P0 and cut-tree T0

the star of edges incident to the apex a of P0, the polyhe-
dra achievable via degree-3 leaf truncation are all domes.

Proof: Let i index the i-th truncation. The leaf
nodes of Ti all lie on Bi. Degree-3 truncation is defined
only on leaf nodes of T , therefore every truncation will
intersect Bi and create two new vertices which also lie
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Figure 9: Without the empty sector property, degree-3
vertex truncation cannot guarantee non-overlap.

on Bi. Thus every face created will have at least two
vertices on B (Cf. Fig. 10), ensuring that Pi is a dome.

Together with the converse, that all domes are achiev-
able via degree-3 truncation, this provides an alterna-
tive and simpler proof that domes unfold without over-
lap. Moreover, Corollary 2 reaches a class of polyhedra
larger than domes, for the starting P0 and T0 just need
the empty sector property. For example, starting from a
non-overlapping unfolding of a cube or a dodecahedron
will lead to polyhedra that are not domes.

7 Conclusion

Although we showed that our result cannot be extended
in several possible directions, it may be that it can be ex-
tended under certain circumstances. For example, per-
haps there are geometric (curvature?) conditions at a
leaf vertex of degree > 3 that permit truncations with-
out overlap.

In general, we believe that the notion of deriv-
ing a non-overlapping unfolding from a simpler non-
overlapping unfolding deserves further study.
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Figure 10: Progressive truncation of Pi → Pi+1 retains
the empty sector property and unfoldability. Left: top
view of polyhedron; middle: cut tree; right: unfolding.


